Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Front Immunol ; 14: 1136308, 2023.
Article in English | MEDLINE | ID: covidwho-2322722

ABSTRACT

Introduction: Inborn errors of immunity (IEI) are a heterogeneous group of diseases caused by intrinsic defects of the immune system. Estimating the immune competence of immunocompromised patients for an infection risk assessment or after SARS-CoV-2 vaccination constituted a challenge. Methods: The aim of this study was to determine the humoral responses of patients with IEI through a comprehensive analysis of specific receptor-binding domain-positive (RBD+) IgG+ memory B cells (MBCs) by flow cytometry, together with routine S-specific IgG antibodies and QuantiFERON SARS-CoV-2 (T-cell response), before the vaccine and 3 weeks after a second dose. Results and discussion: We first analyzed the percentage of specific RBD+ IgG+ MBCs in healthy healthcare workers. Within the control group, there was an increase in the percentage of specific IgG+ RBD+ MBCs 21 days after the second dose, which was consistent with S-specific IgG antibodies.Thirty-one patients with IEI were included for the pre- and post-vaccination study; IgG+ RBD+ MBCs were not evaluated in 6 patients due to an absence of B cells in peripheral blood. We detected various patterns among the patients with IEI with circulating B cells (25, 81%): an adequate humoral response was observed in 12/25, consider by the detection of positive S-specific IgG antibodies and the presence of specific IgG+ RBD+ MBCs, presenting a positive T-cell response; in 4/25, very low S-specific IgG antibody counts correlated with undetectable events in the IgG+ RBD+ MBC compartment but with positive cellular response. Despite the presence of S-specific IgG antibodies, we were unable to detect a relevant percentage of IgG+ RBD+ MBCs in 5/25; however, all presented positive T-cell response. Lastly, we observed a profound failure of B and T-cell response in 3 (10%) patients with IEI, with no assessment of S-specific IgG antibodies, IgG+ RBD+ MBCs, and negative cellular response. The identification of specific IgG+ RBD+ MBCs by flow cytometry provides information on different humoral immune response outcomes in patients with IEI and aids the assessment of immune competence status after SARS-CoV-2 mRNA vaccine (BNT162b2), together with S-specific IgG antibodies and T-cell responses.


Subject(s)
COVID-19 , Memory B Cells , Humans , COVID-19 Vaccines , BNT162 Vaccine , Flow Cytometry , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Health Personnel , Immunoglobulin G
2.
Front Immunol ; 14: 1166198, 2023.
Article in English | MEDLINE | ID: covidwho-2318133

ABSTRACT

Introduction: The Sars-CoV-2 pandemic caused great concern for this novel virus among patients with primary immunodeficiency (PID) or inborn errors of immunity (IEI) and their families. When COVID-19 vaccination program started, no data existed on adverse events (AEs) in this particular patient population, nor if patients felt hesitancy being vaccinated. Objectives: To explore i) reasons for COVID-19 vaccination hesitancy, ii) the number and symptoms of AEs and their severity, durability and management. Method: The organisations International Patient Organisation for Primary Immunodeficiencies (IPOPI), European Society for Immunodeficiencies (ESID) and International Nursing Group for Immunodeficiencies (INGID) distributed a global self-administered online survey. Results: The survey was completed by 1317 patients (mean 47, range 12-100, years) from 40 countries. 41.7% of the patients denoted some hesitancy to COVID-19 vaccination, mainly having doubts about postvaccination protection related to their underlying PID and concerns about negative long-term effects. More women (22.6%) reported "very" or "pretty much" hesitancy compared to men (16.4%) (P<0.05). The most common systemic AEs were fatigue, muscle/body pain and headache, usually the same day or the day after the vaccination and lasting for 1-2 days. 27.8% of the respondents reported severe systemic AEs after any dose of COVID-19 vaccine. Only a minority (7.8%) of these patients visited a health-care professional and 20 patients (1.5%) were hospitalized or seen at emergency room without specifying subsequent admission at the hospital. Significantly more local and systemic AEs were reported after the second dose. No differences regarding AEs were observed across different PID subgroups or vaccine types. Conclusion: At the time of the survey, almost half of the patients reported having felt hesitancy to COVID-19 vaccination highlighting the importance and need of developing joint international guidelines and education programs about COVID-19 vaccination. The types of AEs were comparable to healthy controls, but more frequent AEs were reported. Clinical studies and prospective, detailed registration of AEs related to COVID-19 vaccines in this patient population is of great importance. It is crucial to elucidate whether there is a coincidental or causal association between COVID-19 vaccine and some severe systemic AEs. Our data do not contradict that patients with PID can be advised to be vaccinated against COVID-19, in accordance with applicable national guidelines.


Subject(s)
COVID-19 Vaccines , COVID-19 , Male , Humans , Female , Self Report , COVID-19 Vaccines/adverse effects , Vaccination Hesitancy , Prospective Studies , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Vaccination/adverse effects
3.
J Clin Immunol ; 2022 Oct 18.
Article in English | MEDLINE | ID: covidwho-2229305

ABSTRACT

BACKGROUND: Hypoparathyroidism-retardation-dysmorphism (HRD) syndrome is a disease composed of hypoparathyroidism, growth retardation, severe developmental delay, and typical dysmorphic features caused by the tubulin-specific chaperone E gene variant. Many patients succumb in infancy to HRD due to overwhelming infections mainly caused by Pneumococcus spp. Knowledge related to the immune system in these patients is scarce. PURPOSE: To define the immune phenotype of a cohort of HRD patients including their cellular, humoral, and neutrophil functions. METHODS: The study included HRD patients followed at Soroka University Medical Center. Clinical and immunological data were obtained, including immunoglobulin concentrations, specific antibody titers, lymphocyte subpopulations, lymphocyte proliferation, and neutrophil functions. RESULTS: Nine patients (5 females and 4 males) were enrolled, aged 6 months to 15 years. All received amoxicillin prophylaxis as part of a routine established previously. Three patients had bacteremia with Klebsiella, Shigella spp., and Candida. Three patients had confirmed coronavirus disease 19 (COVID-19), and two of them died from this infection. All patients had normal blood counts. Patients showed high total IgA and IgE levels, low anti-pneumococcal antibodies in spite of a routine vaccination schedule, and reduced frequency of naive B cells with increased frequency of CD21lowCD27- B cells. All patients had abnormal T-cell population distributions, including reduced terminally differentiated effector memory CD8, inverted CD4/CD8 ratios, and impaired phytohemagglutinin (PHA)-induced lymphocyte proliferation. Neutrophil superoxide production and chemotaxis were normal in all patients tested. CONCLUSION: HRD is a combined immunodeficiency disease with syndromic features, manifesting in severe invasive bacterial and viral infections.

4.
Front Immunol ; 13: 1035571, 2022.
Article in English | MEDLINE | ID: covidwho-2215275

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded RNA virus that causes coronavirus disease 2019 (COVID-19). One of the main topics of conversation in these past months in the world of immunology has been the issue of how patients with immune defects will fare if they contract this infection. To date there has been limited data on larger cohorts of patients with Inborn Errors of Immunity (IEI) diagnosed with COVID-19. Here, we review the data of COVID-19 infections in a single center cohort of 113 patients from the Mount Sinai Immunodeficiency program, who had 132 infections between January 2020 and June 2022. This included 56 males and 57 females, age range 2 - 84 (median 42). The mortality rate was 3%. Comparison between admitted patients revealed a significantly increased risk of hospitalization amongst the unvaccinated patients, 4% vaccinated vs 40% unvaccinated; odds ratio 15.0 (95% CI 4.2 - 53.4; p <0.00001). Additionally, COVID anti-spike antibody levels, determined in 36 of these patients post vaccination and before infection, were highly variable.


Subject(s)
COVID-19 , Female , Male , Humans , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , SARS-CoV-2 , Hospitalization , Vaccination , Communication
5.
Front Immunol ; 13: 1010899, 2022.
Article in English | MEDLINE | ID: covidwho-2080156

ABSTRACT

Data regarding the willingness of patients affected by inborn errors of immunity to accept vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are limited. Therefore, this study assessed SARS-CoV-2 vaccination coverage and hesitancy in immunodeficient patients by surveying adults with primary immune deficiencies and autoinflammatory and rheumatic diseases on biologic therapy. The study was conducted from September 20, 2021, to January 22, 2022, when the primary coronavirus disease 2019 (COVID-19) vaccinations were available to all adults in Poland. We included 207 participants consecutively recruited from five referral centers (57% female; median age: 42.6 [range: 18-76, standard deviation ± 14.70] years). Overall, 55% (n = 114), 17% (n = 36), and 28% (n = 57) of the patients had primary immune deficiencies, autoinflammatory diseases, and rheumatic diseases, respectively. Among the entire cohort, 168 patients (81%) were vaccinated, and 82% were willing to receive a booster dose. Patients with autoinflammatory diseases had the highest vaccination rate (94.4%). A strong conviction that it was the correct decision (72%), fear of getting COVID-19 (38%), and expert opinions (34%) influenced the decision to vaccinate. Among the unvaccinated patients, 33.3% had primary or vocational education (p <0.001). Furthermore, only 33% believed they were at risk of a severe course of COVID-19 (p = 0.014), and 10% believed in vaccine efficacy (p <0.001). They also doubted the safety of the vaccine (p <0.001) and feared a post-vaccination flare of their disease (p <0.001). Half of the unvaccinated respondents declared that they would consider changing their decision. Vaccination coverage in immunodeficient patients was higher than in the general Polish population. However, the hesitant patients doubted the vaccine's safety, feared a post-vaccination disease flare, and had primary or vocational education. Therefore, vaccination promotion activities should stress personal safety and the low risk of disease flares due to vaccination. Furthermore, all evidence must be communicated in patient-friendly terms.


Subject(s)
COVID-19 , Hereditary Autoinflammatory Diseases , Primary Immunodeficiency Diseases , Rheumatic Diseases , Vaccines , Adult , Humans , Female , Male , COVID-19/prevention & control , COVID-19 Vaccines , Poland/epidemiology , SARS-CoV-2 , Syndrome , Vaccination/adverse effects , Surveys and Questionnaires , Vaccines/therapeutic use
6.
Front Immunol ; 13: 994253, 2022.
Article in English | MEDLINE | ID: covidwho-2065521

ABSTRACT

The risk of severe adult respiratory coronavirus-2 (SARS-CoV-2) infection and the course of the infection among individuals with common variable immunodeficiency (CVID) relative to the general population have been a matter of debate. We conducted a Danish nationwide study comparing the timing of SARS-CoV-2 vaccination, the risk of first confirmed SARS-CoV-2 infection, re-infection, and the outcome of infection among individuals with CVID relative to an age- and gender matched control group. Cox regression was used to calculate incidence rate ratios. The CVID patients received SARS-CoV-2 vaccinations earlier than those included in the population control group. Even so, the risks of both first infection and re-infection were increased among the individuals with CVID. The CVID group also had increased risk for hospital contacts due to SARS-CoV-2 infection relative to the general population. However, reassuringly, the risk of mechanical ventilation and death did not differ between the groups, but the numbers were low in both groups, making the estimates uncertain. Though this is the largest study to investigate the risk of SARS-CoV-2 infections and outcomes hereof among individuals with CVID relative to the general population, we cannot rule out minor differences in severity, which might only be detectable with an even larger sample size.


Subject(s)
COVID-19 , Common Variable Immunodeficiency , Adult , COVID-19/epidemiology , COVID-19 Vaccines , Cohort Studies , Common Variable Immunodeficiency/complications , Common Variable Immunodeficiency/epidemiology , Denmark/epidemiology , Humans , Reinfection , SARS-CoV-2
7.
J Clin Immunol ; 42(3): 471-483, 2022 04.
Article in English | MEDLINE | ID: covidwho-1653615

ABSTRACT

BACKGROUND: Inborn errors of immunity (IEI) and autoantibodies to type I interferons (IFNs) underlie critical COVID-19 pneumonia in at least 15% of the patients, while the causes of multisystem inflammatory syndrome in children (MIS-C) remain elusive. OBJECTIVES: To detect causal genetic variants in very rare cases with concomitant critical COVID-19 pneumonia and MIS-C. METHODS: Whole exome sequencing was performed, and the impact of candidate gene variants was investigated. Plasma levels of cytokines, specific antibodies against the virus, and autoantibodies against type I IFNs were also measured. RESULTS: We report a 3-year-old child who died on day 56 of SARS-CoV-2 infection with an unusual clinical presentation, combining both critical COVID-19 pneumonia and MIS-C. We identified a large, homozygous loss-of-function deletion in IFNAR1, underlying autosomal recessive IFNAR1 deficiency. CONCLUSIONS: Our findings confirm that impaired type I IFN immunity can underlie critical COVID-19 pneumonia, while suggesting that it can also unexpectedly underlie concomitant MIS-C. Our report further raises the possibility that inherited or acquired dysregulation of type I IFN immunity might contribute to MIS-C in other patients.


Subject(s)
COVID-19 , Interferon Type I , Autoantibodies , COVID-19/complications , Child, Preschool , Cytokines , Humans , Receptor, Interferon alpha-beta/genetics , SARS-CoV-2 , Systemic Inflammatory Response Syndrome
8.
Expert Rev Clin Immunol ; 17(2): 163-168, 2021 02.
Article in English | MEDLINE | ID: covidwho-1066077

ABSTRACT

Introduction: Patients affected by Inborn Errors of Immunity (IEI) represent a potential group-at-risk in the current COVID-19 pandemic. Studies on large and small cohorts of IEI reported a huge variability clinical manifestations associated to SARS-Cov-2, ranging from asymptomatic, mild, moderate/severe to death. A great impulse to improve remote assistance programs and to switch to home-based treatment to reduce mobility and face to face contacts has been implemented.Areas covered: The authors completed a comprehensive review of the literature by searching the PubMed database for studies on large and small cohorts and case reports of IEI patients with COVID-19, with the aim to provide useful information for their clinical management during the COVID-19 pandemic.Expert opinion: Surprisingly, a low number of IEI patients affected by SARS-Cov-2 were reported with a risk to die for COVID-19 overlapping that of the general population. The low number might be explained by the choice of most physicians to inform early in the pandemic about safety measures, to switch most of the IEI patients to home therapy and to remote assistance. The guidelines issued by the scientific societies and periodically updated, represent the best tool for the clinical management of IEI patients.


Subject(s)
COVID-19/epidemiology , COVID-19/therapy , Primary Immunodeficiency Diseases/epidemiology , Primary Immunodeficiency Diseases/therapy , COVID-19/diagnosis , COVID-19/prevention & control , Humans , Immunization, Passive , Practice Guidelines as Topic , Remote Consultation , SARS-CoV-2/isolation & purification , COVID-19 Serotherapy
SELECTION OF CITATIONS
SEARCH DETAIL